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ABSTRACT: In this research article, more characteristic of amplitude ratios of assortment of reflected and 
refracted wave at the interface between micropolar elastic solid and micro polar fluid saturated porous solid 
have been investigated. So, the wave propagates in the medium micro polar elastic solid and micro polar 
fluid saturated porous solid and separated by an interface � = � is studied. Longitudinal wave and coupled 
wave impinges obliquely on plane boundary and calculate the amplitude ratios of different waves for this 
specific model and results obtained are revealed figures wise with respect to incidence angle. 
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I. INTRODUCTION 

The structure of the Earth is complex and it involves 

materials of different kind. Liquid -saturated porous 

solids are often present on and below the surface of the 

Earth. Dynamic analysis of liquid-saturated porous 

media is a subject with applications in numerous 

branches of science and engineering, including 

geophysics, seismology, civil and mechanical 

engineering. Eringen and Suhubi [1] discovered "The 

theory of micropolar elasticity". In classical elasticity, the 

motion of atom is describe by displacement vector with 

three degree of freedom, while in micropolar elasticity, 

six degree of freedom of a particle which is in motion 

described by both of displacement vector and 

microrotation vector. Eringen [2] manufactureted. "The 

linear theory of micropolar viscoelasticity". Lot of 

researchers analysed about the waves problems. Many 

of them are Parfitt and Eringen [3], Nowacki [4], Tomar 

and Kumar [5], Kumari [6], Barak et al., [7], Merkel and 

Luding[8] and Kumari et al., [9], Kumar et al., [10-14], 

Madan et al., [15-17] and Kaliraman and Poonia [18] 

etc. The theory of propagation of waves through the 

liquid saturated porous medium was discovered by Biot 

[19]. Consequently, Biot [20] discussed the general 

solution of equations for elasticity and consolidation for 

the porous materials.  

The intention of the present paper is cogitation of 

propagation of waves at solid media. The amplitude 

ratios of are computed using appropriate boundary 

conditions and revealed figures wise with respect to 

incidence angle. 

II. GOVERNING EQAUTIONS OF THE CONSIDERED 
PROBLEM 

Medium M1 (Micropolar elastic solid) 

Eringen [21], derived the equations of the medium 
micropolar elastic solid. 

�c�� + c
��∇�ϕ = ∂�ϕ
∂t�                                                              �1� 

�c�� + c
��∇�U + c
�∇ ×Φ = ∂�U
∂t�                                      �2� 

�c��∇� − 2ω���Φ+ω��∇ × U = ∂�Φ
∂t�                                �3� 

where 

c�� = λ + 2µ

ρ
 c�� = µ

ρ
 

c
� = κ

ρ
 c�� = γ

ρj 
ω�� = κ

ρj                              (4) 

Parfitt and Eringen [3], derived the equation (1) to 
longitudinal wave with velocity V�� = �c�� + c
�� and Eqns. 
(2, 3) are coupled equations in vector potentials U and 
Φ and these correspond to coupled transverse and 

micro-rotation waves. If 
ω�
ω� � > 20, ∃ two sets of coupled-

wave propagating with velocities 1/λ�  and 1/λ�. 
where 

λ�� = 1
2 �B + !B� − 4C$ λ�� = 1

2 �B + !B� − 4C$ 
         (5) 

and 

B = q�p − 2�
ω� + 1

�c�� + c
�� + 1
c�� 

C = ' 1
c�� − 2q

ω�( 1
�c�� + c
�� 

p = κ

µ+ κ 
q = κ

γ
                            (6) 

Considering the components of displacement and 
micro- rotation as U = �u, 0, w� Φ = �0,Φ�, 0�       (7) 
where 

u = ∂ϕ
∂x − ∂ψ

∂z  w = -ϕ
-. + -ψ

-/           (8) 

Stresses for medium M1 are taken from Kumari [6]. 

e
t
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Medium M2 (Micropolar Fluid Saturated Porous 
Solid) 
The fundamental equations for micro polar fluid 
saturated porous solid in the presence of extra vagance 
are given by Erigena [21] as 

0λ1 + 2µ2 + κ13∇�∇. 52� − �µ2 + κ1�∇ × �∇ × 52� +
κ1�∇ × 62� + Q2 ∇�∇. 52� = -�

-8� 0ρ2��52 + ρ2��923 +
b1 -

-8 �52 − 92�                                                                               (9) 

∇�Q2e1 + R2ϵ1� = -�
-8� 0ρ2��52 + ρ2��923 − b1 -

-8 �52 − 92�        (10) 

0α2 + β2 + γ13∇�∇. 62� − γ1 ∇ × �∇ × 62� + κ1�∇ × 52� −
2 κ162 = ρ2ȷ ̅-�62

-8�                                                           (11) 

λ1,µ2,  κ2, α2, β2 and γ1 materials constants for solid-liquid 

aggregate, ρ2 is density, b1 is the dissipation function, 
ρ2�� ,ρ2�� ,ρ2�� and ȷ ̅ are the rotation inertia, 62 is 

microrotation vector, 5 2 is the displacement vector in the 

solid part with components u1�, u1�, u1
;  92 is the 
displacement vector in the liquid part with components U2� , U2�, U2
; e1 = div 52, ϵ1 = div 92, Q2 is the measure of 
coupling between volume change of solid and that of 
liquid, R2 is the measure of pressure that must exerted on 
the fluid to force a given volume of it into the aggregate 
while total volume remains constant. 

Let us consider the time harmonic variations 0CDEω2 3 and 

assuming the Helmholtz’s resolution of displacement 
vector as u1 = ∇q1 + ∇ × H2 ∇. H2 = 0            (12) U2 = ∇ψ2 + ∇ × G2 ∇. G2 = 0            (13) 

and eliminating ψ2, ∇�ψ2, ϕ1�, ∇�ϕ1� from the consequential 

terms and obtained the subsequent equations: 0A2∇� + B2ω2∇� + C1ω2�3q1 = 0                                    (14) 

A2∇� +ω2�0R2ρ2�� − ρ2��Q23 + iω2�R2 + Q2�q1 − ω2�F1ψ2 = 0 (15) 

0∇� + D2ω2 �∇� + ω2 �E23H∗ = 0                                            (16) 

∇�0∇� + ω2 �E2� + p1r̅�3H∗ − p10−r� + r̅�ω2�3ϕ1� = 0    (17) 

Consider the solution of Eqn. (14) as q1 = q1�∗ + q1 �∗                                                            (18) 
where q1�∗ and q1 �∗  satisfy 

N∇� + δ1��O q1�∗ = 0 N∇� + δ1��O q1 �∗ = 0      (19)     

where 

δ1�,�� = λ1�,��
ω2� 

λ1�,�� = �B2 P !�B2� − 4A2C1�$
2A2  

Consequently in limitless medium, solutions of Eqn. (14) 
correspond to two coupled longitudinal waves. The 
wave corresponding to q1�∗  being the faster one is called 
fast longitudinal displacement (FLD) wave propagating 

with the phase velocity λ1�� and corresponding to q1 �∗  being 
the slower one, is called slow longitudinal displacement 

(SLD) wave propagating with the phase velocity λ1� �
. 

Using the Eqns. (18) and (17), from the Eqn. (15) 
obtained the result 
ψ2 = µ2�q1�∗  + µ2�q1 �∗                                                                     �20� 
where 

µ2E = �
Q2 N−A2λ1� � + 0R2ρ2�� − ρ2��Q23 + E R2

ω2 �R2 + Q2�q1 E∗O  i =1, 2 

Consider the solution of equation   H2 = H2�∗ + H2�∗                                                                                                          �21� 
Where H2�∗ and H2�∗  satisfy 

N∇� + δ1
�O H2�∗ = 0 N∇� + δ1��O H2�∗ = 0         (22) 

where 

δ1
,�� = λ1
,��
ω2� 

λ1
,�� = �D2 P !�D2� − 4E2��$
2  

Using Eqns. (21) and (22) in Eqn. (16), we get S1� = µ2
H2�∗  + µ2�H2�∗                                                          �23� 
where 

    µ2 
,� = δ1
,�� Nδ1
,�� −ω2 �E2� − p1r̅�O
p10−r� + r̅�ω2�3  

Eventually, in limitless medium, the solutions of Eqn. 
(22) correspond to two coupled transverse and micro-

rotational waves propagating with velocities λ1
 �
and λ1�� 

. 
The following relations in micropolar fluid saturated 
porous solid are given by Eringen and Konczak t̅TU = 0λ1u1V,V + Q2U2V,V3δTU + µ20u1T,U + u1 U,T3

+ κ10u1 U,T − ϵTUVϕ1V3                                �24� 
m2 TU = α2ϕ1V,VδTU + β2ϕ1T,U + γ1ϕ1U,T                                              �25� 
Y = Q2e1 + R2ϵ1                                                                              �26� 
where t̅TU,m2 TU and Y  are represents the force stress, 
couple stress and the normal stress in liquid 
respectively. 

III. FORMULATION OF THE PROBLEM WHEN 
INTERFACE � = � CONTACT PERFECTLY 

Now, in this problem by taking z-axis as the interface z = 
0 perfect in contact separates the micropolar elastic 
solid, medium M�\z > 0] and micropolar fluid saturated 
porous elastic solid, medium M� \z ^ 0] as shown in Fig. 
1. 

 

Fig. 1. Geometry of the problem. 

The velocity potentials for medium M1 are taken from 
Singh and Kumar [22]. 
The velocity potentials for medium M2 are derived by 
Singh and Barak [23]. 

IV. BOUNDARY CONDITIONS FOR WELDED 
CONTACT INTERFACE 

At the interface  _ = 0, between micro polar elastic solid 
and micropolar fluid saturated porous solid is 
considered to be in perfect. The pertinent boundary 
conditions are continuity of force stresses, couple 
stress, vanishing of the normal stress in liquid, 
microrotation and displacements in that order and 
boundary condition are  
At the boundary z = 0, t.. = t̅.. t./ = t̅./ m.` = m2 .` σ =  0 

ϕ� = ϕ1� u = u1 

w =  w2                            (27) 
Using the expressions of potentials and boundary 
conditions (27) and using the Snell’s law: sin θ�V� = sin θ�V� = sin θ�

λ�D� = sin θ

λ�D�  
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= sin θ�V2� = sin θ�
λ1�D� = sin θ


λ1�D�                                                 �28� 

 
where 

V� = dV�  for incident longitudinal wave
λ�D� for incident coupled wave      j 

Eventually, obtained a non-homogeneous system of 
seven equations in matrix from 

AZ = B                                                                                      �29� 
Z = \Z�Z�Z
Z�ZmZnZo]8                                                       �30� 
Z� = B�B� Z� = B�B� Z
 = B
B� Z� = B2�B� 

Zm = B2�B� Zn = B2
B� Zo = B2�B� 
  (31) 

where Z � to Zo are the amplitude ratios of reflected 
longitudinal displacement, reflected transverse and 
microrotational waves  and refracted FLD, refracted 
SLD and refracted transverse and microrotational 
waves. 
The coefficients of matrix are: a�� = −p�λ+ 2µ+ κ�cos�θ� + λsin�θ�q 
a�� = −�2µ+ κ�sinθ�cosθ�

δ��k∗� 

a�
 = −�2µ+ κ�sinθ
cosθ

δ��k∗� 

a�� = s�2µ2 + κ1�cos�θ1� + λ1 + Q2µ2�tδ1��k∗� 

a�m = s�2µ2 + κ1�cos�θ1� + λ1 + Q2µ2�tδ1��k∗� 

a�n = �2µ2 + κ1�sinθ1
cosθ1

δ
�k∗� 

a�o = �2µ2 + κ1�sinθ1�cosθ1�
δ��k∗� 

a�� = −�2µ+ κ�sinθ�cosθ� 

a�� = − dµ�cos�θ� − sin�θ�� + κcos�θ� − κ E
δ��

uδ��k∗� 

a�
 = − dµ�cos�θ
 − sin�θ
� + κcos�θ
 − κ F
δ��

uδ��k∗� 

a�� = −s�2µ2 + κ1�sinθ1�cosθ1�tδ1��k∗� 

a�m = −s�2µ2 + κ1�sinθ1�cosθ1�tδ1��k∗� 

a�n = − dµ20cos�θ1
 − sin�θ1
3 + κ1cos�θ1
 − κ1µ2

δ
�

uδ
�k∗� 

a�o = − dµ20cos�θ1� − sin�θ1�3 + κ1cos�θ1� − κ1µ2�
δ��

uδ��k∗� 

a
� = a
� = a
m = 0a
� =  λEδ�cosθ� a

 =  λFδ�cosθ
a
n = λ1µ2
δ1
cosθ1
 

a
o = λ1µ2�δ1�cosθ1� 

a�� = a�� = a�
 = a�n = a�o = 0 a�� = 0Q2 + µ2�R23a�m = 0Q2 + µ2�R23 

am� = am� = amm = 0am� = Eam
 = F amn = −µ2
amo = −µ2�an� = −i sinθ� 

an� = i cosθ�
δ�k∗ an
 = i cosθ


δ�k∗ 

an� = i sinθ1�
δ1�k∗ anm = i sinθ1�

δ1�k∗ 

ann = −cosθ1

δ1
k∗ ano = −cosθ1�

δ1�k∗ 

ao� = cosθ�ao� = i sinθ�
δ�k∗ ao
 = i sinθ


δ�k∗ 

ao� = cosθ1�
δ1�k∗ aom = cosθ1�

δ1�k∗ aon = sinθ1

δ1
k∗ 

aoo = cos θ2� δ
1v
T∗                                                      (32) 

where 
(i) For the incident longitudinal wave (k∗ = k�) Y� = −a�� Y� = a�� Y
 = a
� Y� = a�� Ym = −am� Yn = −an� Yo = ao�                                                              (33) 
(ii) For the incident coupled wave (k∗ = δ�) Y� = a�� Y� = −a�� Y
 = a
� Y� = a�� Ym = −am� Yn = an� Yo = −ao�                        (34)

V. NUMERICAL RESULTS AND DISCUSSION 

System of seven non-homogeneous equations obtained 
above is solved by Cramer rule to obtain the various 
amplitude ratios for emergence longitudinal wave as 
well as coupled wave. In order to understand the 
behavior of different amplitude ratios and revealed in 
graphically and by taking the values of applicable elastic 
parameters. 
For M�, Gauthier [24], derived the parametric values for 
medium M�.  
λ = 7.59 × 10��  dyne/cm� µ = 1.89 × 10��dyne/cm� 

κ = 0.0149 × 10�� dyne/cm�    ρ = 2.19 gm/cm
 
γ = 0.0268 × 10��  dyne j = 0.0196 cm� 

ω2� ω2 ��⁄ = 20 (35) 

For medium M�, a particular modal microplar fluid 
saturated porous solid, the physical constants are given 
by Gauthier [24] 

λ1 =  4.339 × 10mN/cm� µ2 = 2.765 × 10mN/cm� 

κ1 = 1.49 × 10�N/cm� γ1 = 2.68 × 10mdyne ȷ ̅ = 2 × 10D�ncm� ρ2 = 2.19 gm/cm
 
ρ� = 2.1372gm/cm
 ρ�� = 1.926137gm/cm
 

ρ�� = −0.002137gm/cm
 ρ�� = 0.215337gm/cm
 

Q2 = 7.635 × 10�N/cm
 R2 = 3.26 × 10�N/cm
 

ω2�
ω2��

= 10 
f = R

ρ}ω
= 0.712547    (36) 

Determines the amplitude ratios of different waves for 
this especially model and using the MATLAB software 
(R2015a 32-bit) for executing the program and revealed 
figurewise. 
In Figs. (2-11), describes the variations of amplitude 
ratios with the different emergence wave, first wave is 
longitudinal wave and second one is coupled wave 
respectively, solid lines show the variations of |ZE|, M�  is 
micropolar elastic solid and M� is micropolar fluid 
saturated porous solid. This case is represented by 
‘General’ and uses its abbreviation “GEN” in the figures. 
The tendency of |ZE| is based on incident wave with 
different angles. 
In Fig. 2, the dissimilarity in the values of |Z�| is non-

zero at initial angle i.e. θ� = 0°and final angle i.e. θ� =90°whereas the values of |Z�| and |Z
| are zero at initial 
and final angle. Now, the values of |Z�| are smoothly 

decreases from its maxima θ� = 0°and approaches to 

minimum value at the angle θ� = 68°but after that 
values are rapidly increases from the same point and 

approches to maxima at the angle θ� = 90°. On the 
other hand, the values of |Z�| are smoothly increases 

from the intial angle θ� = 0°and obtain its maximum 

value approximately at θ� = 54°and later values are very 
slowly decreases corresponding to angle of emegence 

and approaches to minima at θ� = 90°.  The values of 
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|Z
| are very low in contrast to the |Z�| and |Z�| and 
values are increases and decreases according to 
angles. The values of |Z�|, |Z�| and |Z
| are totally 
different to each others except some angle. In this 
figure, the value of amplitude ratio |Z�| is higher than |Z�| and |Z
|. 

 

Fig.  2. Variations of amplitude ratios against Degree for 
longitudinal waves for amplitude ratio 1, 2, 3. 

The Fig. 3, describes the variation of the values of |Z�|. 
In the beginning the value is non-zero and maximum at 

initial angle i.e. θ� = 0° and zero at final angle i.e.  θ� =90°. Now, the values of |Z�| are smoothly decreases 

from its local maxima θ� = 0°and approaches to 

minimum value at the angle θ� = 90°. 

 
Fig. 3. Variations of amplitude ratios against Degree for 

longitudinal waves for amplitude ratio 4. 

In Fig. 4, shows the dissimilarity of the values of |Zm|. In 
the beginning the value is non-zero and maximum at 

initial angle i.e. θ� = 0°and zero at final angle i.e. 

θ� = 90°. Now, the values of |Zm| are smoothly 
decreases from its maximum value at the angle θ� =
0°and approaches to minimum value at the angle 

θ� = 90°. 

 

Fig. 4. Variations of amplitude ratios against Degree for 
longitudinal waves for amplitude ratio 5. 

The Fig. 5, describes the variation of the values of |Zn|. 
The values of |Zn| are zero and minimum at the intial 

and final angle i.e. θ� = 0°and  θ� = 90°.The values are 

smoothly increases from the intial angle θ� = 0° of |Zn| and obtain its maximum value approximately 

at θ� = 53° but after that  the values are sharply 
decreases as well as angle of emegence are increases 

and approaches to minima at θ� = 90°. 

 

Fig. 5. Variations of amplitude ratios against Degree for 

longitudinal waves for amplitude ratio 6. 

In this Fig. 6, describes the dissimilarity of the values of |Zo|. The values of |Zo| are zero at the intial and final 

angle i.e. θ� = 0°and  θ� = 90°. From the angle of 

incidence θ� = 0°  the values are smoothly increases 
and obtain its local maxima approximately at θ� =54° whereas the values are sharply decreases as well 
as angle of emegence are increases and approach to its 

minima at θ� = 90°. 

 

Fig. 6. Variations of amplitude ratios against Degree for 
longitudinal waves for amplitude ratio 7. 

In the Fig. 7, dispersion in amplitude ratios |ZE| �i = 1, 2,3� is depicted in GEN case when the incidence angle 

varies from θ� = 0° to 90°. The value of |Z�| is zero 

when θ� = 0°and θ� = 90°while the value of |Z
| is zero 

only at the angle θ� = 90°and value of |Z�| is non-zero 

at θ� = 0°and θ� = 90°. Now, the values of amplitude 
ratio |Z�| sharply increasing continuously when 
emergence angle increases from its initial position to the 

angle θ� = 24° after that the values are sharply 
decreasing from the same highest value when 
emergence angle increases from the angle θ� =24° to  θ� = 90°. The values of |Z�| are smoothly 

decreases when the angleθ� = 0°and approaches to 

minimum value at the angle θ� = 20° but after that 
values are sharply increases from the same point and 

approches to maxima at the angle θ� = 24° and again 
values are sharply decreases from the peak point to 

angle θ� = 27° and then values are very slowly 
decreases and increases according to increases the 
angle of incidence. The values of |Z
| are very less in 
comparison to the |Z�| and |Z�| and values are 
increases and decreases according to angle. The 
values of |Z�|, |Z�| and |Z
| are totally different to each 
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others except some angle. In this figure, the  maximum 
value of amplitude ratio |Z�| is higher than |Z�| and |Z
| 
and the greatest value of |Z�| is higher than |Z
|. 

 

Fig. 7. Variations of amplitude ratios against Degree for 
coupled waves for amplitude ratios 1, 2, 3. 

In the Fig. 8, dispersion in amplitude ratios |Z�| is 
depicted in GEN case when the incidence angle varies 

from θ� = 0° to 90°. The value of |Z�| is zero when θ� =0°and θ� = 90°. Now, the values of amplitude 
ratio |Z�|  sharply increasing continuously when 
emergence angle increases from its initial position to the 

angle θ� = 24° after that the values are sharply 
decreasing from the same highest value when 
emergence angle increases from the angle θ� =24° to θ� = 90°. 

 

Fig. 8. Variations of amplitude ratios against Degree for 
coupled waves for amplitude ratio 4. 

In the Fig. 9, dispersion in amplitude ratios |Zm| is 
depicted in GEN case when the incidence angle varies 

from θ� = 0° to θ� = 90°. Despite the different values of |Z�| and |Zm| except only the angles θ� = 0° and 90°, the 
behaviour of the in Fig. 7, 8 is similar. 

 

Fig. 9. Variations of amplitude ratios against Degree for 
coupled waves for amplitude ratio 5. 

In this Fig. 10, describes the variation of the values 
of |Zn|. At the beginning the value is non-zero and 

maximum at initial angle i.e. θ� = 0°and zero at final 

angle i.e. θ� = 90°. Now, the values of amplitude ratio |Zn| are smoothly decreases from its maximum value at 

the angle of incidence θ� = 0°to θ� = 24° but after that 

values are suddenly increases θ� = 24°to θ0 = 26
°
and 

again decreases when angle of incidence are increases 
and approaches to minimum value at the angle θ0 =
90°. 

 
Fig. 10. Variations of amplitude ratios against Degree 

for coupled waves for amplitude ratio 6. 

In the Fig. 11, variation in the values of |Z7| is depicted 

in GEN case when the angle varies from θ0 = 0
°
 to 

θ0 = 90
°
. The behaviour of the in Fig. 10, 11 is similar 

with the different values of |Z6| and |Z7| except only the 

angle θ0 = 90
°
. 

 

Fig. 11. Variations of amplitude ratios against Degree 
for coupled waves for amplitude ratio 7. 

VI. CONCLUSION 

In this mathematical problem, decomposing micropolar 
elastic solid and micropolar fluid saturated porous solid 
at interface. We have observed that  
- The amplitudes ratios of various waves are with the 
complex valued. 
- The tendency of amplitudes ratios of various waves 
depending at angle θ� and the incident wave and 
properties of materials half spaces.  
- The behaviors of some figures of amplitude ratios are 
remain same whereas the values are totally different. 
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